MapFormers: Transformers with Cognitively-Plausible Memory Systems
Main advisors: Victor Rambaud, Yair Lakretz
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Duration: 6 months - full time

Transformers [1] have been the most widely used architecture in Al since their introduction in 2017,
allowing the training of increasingly large Large Language Models, but despite their success,
Transformer-based models learn incoherent world models [2] and are unable to generalize
out-of-distribution (OOD) to non-regular formal tasks [3]. One explanation of this is the incapacity of
the Transformer architecture to learn cognitive maps [4], abstract relational models which factorize
content and structure, disentangling them, giving humans and animals the flexibility to adapt to new
situations.

Recently, we have introduced MapFormers [5], a Transformer-based architecture with
input-dependent matrices in order to update absolute or relative positional encoding, respectively as
models of Episodic Memory (EM) and Working Memory (WM) [6]. MapFormers learn cognitive
maps with no supervision, which provides these models with strong (OOD) generalization capacities
on structure-dependent tasks such as 2D navigation.

Neural evidence of spatial cognitive maps have been identified in rodents in the hippocampal region,
with place cells firing every time the animal came back to a specific location [7], while grid cells fire
periodically as an animal is navigating a room [8]. In the Prefrontal Cortex (PFC), intracranial
recordings have shown that the neural code of a macaque memorizing and repeating a sequence was
sequentially shifted into orthogonal neural subspaces [9].

This phenomena can be mathematically explained by the formalism of MapFormers and their
input-dependent matrices, however, one key difference between Al models and biological systems is
that biological neurons cannot fire negatively. This constraint, coupled with bounded synaptic weights
and neural activity can result in disentangled neural representations [10] and in the case of 2D
navigation, explain geometric phenomena observed in grid cells [11].

Main Goals of the Intership:
e Develop and extend MapFormers to learn complex relational structures: Extending our
previous work — this involves investigating novel architectures or modifications to enhance
the capacity of MapFormers to learn more complex cognitive mapping.

e Conduct a neural analysis of learned representations in MapFormers and compare them
with human and animal data. This involves:
o Implementing and evaluating the ability of MapFormers to learn complex recursive
structures.
o Studying the internal dynamics and comparing the learned neural representations with
established biological data (e.g., place/grid cells, and sequential coding in the PFC).
o Implementing and quantifying the impact of biologically-inspired constraints (such as
non-negative neural firing, following).
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(a) Schematic view of cognitive maps in Episodic Memory (EM) models. (b) Implementation of EM
in transformers: MapFormer-EM, with a dedicated pool of neurons for position, acting as grid cells
[8]. (c-d) Example of neural analysis comparison between animals and MapFormers. (c) Recorded
neural activity of grid cells in a rodent’s Entorhinal Cortex (EC) lies on a torus [12]. (right) PCA of
samples trajectories of MapFormer-EM model, where the red curve corresponds to the model
performing a square trajectory.

Prerequisites: Strong background and experience with PyTorch and Transformers, strong
mathematical background. Finally, mastering Python and visualization tools is mandatory. Familiarity
and interest with cognitive sciences is also desired.

Salary: based on the ENS grid for internships (~650 Euros per month).

Pl n r T li nd relevant proj :

victor.rambaud@gmail.com and vair.lakretz@gmail.com
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