Developments in computer vision need to translate into benefits for patients by transferring tools and applications developed for non-medical images to microscopic and macrsocopic medical imaging. The integration of this very diverse data to obtain a comprehensive view of a patient and his disease is a challenge which we must undertake in Prairie. The relative low numbers of patient data compared to the large number of features and parameters describing the patient and his disease, and the time-consuming annotation, remain important challenges and will require new tools which can train and learn on datasets with a weaker level of human supervision.

