Normative criteria developed in economics (such as fairness, equity, anonymity, privacy, strategyproofness, efficiency), can be help defining frameworks for analysing the ethics and social acceptability of AI algorithms, and investigating the trade-offs that have to be made between incompatible criteria. Notions of fairness in AI and social choice are slightly different but convergent, and the various notions of fairness studied in social choice are relevant to AI research. Moreover, AI techniques are useful for making collective decisions: especially, ML methods for learning and eliciting users’ preferences help making collective decisions that offer a good trade-off between the quality of the outcome and the communication burden. This applies to various areas of public decision making, such as allocation problems (matching students to universities, organs to patients, designing fair and robust schedules in hospitals or high schools), or fair and efficient public spending.

