Relational, or ‘graphical’ data is becoming ubiquitous (e.g. social / biological / transportation networks, energy grids…). Its treatment calls for new methods to construct and process adequate representations of data points in suitable spaces. There are many important scenarios where data must be distributed on several network locations, e.g. when it is too large to fit on a single machine, or when it can’t leave administrative boundaries due to privacy concerns. New distributed algorithms, and possibly new network architectures are needed for efficient learning from data distributed over a network.



