Natural Language Processing (NLP) has made considerable progress over the last few years, mainly due to impressive advances in machine learning. We have now efficient and accurate tools for 20+ languages, but the vast majority of the world languages lack the resources for state-of-the-art NLP. This is a major challenge for our field, since preserving language and cultural diversity is as important as preserving bio-diversity. Technology is not the only solution, but it helps facilitate this process by leveraging resources, bridging the gap between languages, and enhancing our understanding of culture and society.


